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We compare four pseudo-spectral split-step methods for solving a class of nonlinear 
Schrodinger (NLS) equations. The importance of observing the L’ invariance of the con- 
tinuous problem is demonstrated through numerical experiments. The best performance is 
obtained by transforming the given equation to an NLS equation where two of the coefficients 
satisfy a simple algebraic relationship. The problem can be solved efficiently in terms of the 
new variables, and the I’ norm of the computed solution is time-invariant. '(: 1990 Academic 

Press. Inc. 

1. INTR~DUCTL~N 

A generalized nonlinear Schrodinger equation (GNLS j 

(1.1) 

governs the modulation of a quasi-monochromatic wave train in a weakly non- 
linear, dispersive medium. We are considering the initial value problem with 
u(x, 0) = uO(.x) specified, and where i’= - 1, and q‘., qq, q,,*, and 9, are real 
parameters. Equation (1.1) was derived independently by Johnson [l] and 
Kakutani and Michihiro [Z] to describe the behaviour of the Stokes wave near the 
state of modulational instability. (Although Johnson’s equation contains a term in 
UC,, where <,.= 1u12, this may be eliminated as shown in [2].) The GNLS also has 
wide applicability as a model equation for a large class of evolutionary systems 
where the relevant time and space scales are greater than those captured by the 
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PSEUDO-SPECTRAL SOLUTION OF NLS EQUATIONS 1c9 

usual nonlinear Schrodinger equation with a cubic nonlinearity r3]. It contains. as 
special cases, 

Equation (4.2) is the well-known cubic Schrodinger equation, which has impor- 
tant applications in fluid dynamics [4], nonlinear optics [5]. and plasma physics 
[S]. The derivative nonlinear Schrodinger equation (1.3) governs the propagation 
of circular polarized nonlinear Alfvtn waves in plasmas [7]. Equation ( 1.4: 
describes rhe self-modulation of the complex amplitude of solutions of the 

enjaminOno equation [S], and the cubic-quintic Schrodinger equation ! 1.5 : the 
propagation of laser beams in an inhomogeneous medium [9]. Equations 
( 1.2 )--( 1.4) are pa.rticularly interesting, being completely integrable [ 10. 1 l], :*nd 
admit, for certain initial conditions, soliton solutions. 

As a further consequence of their complete integrability, those solutions of 
( 1.2 )-( 1.4) which decay rapidly as s -+ k ‘x’ satisfy an infinite number of conserva- 
tlon laws. For the general equation (1.1) rapidly decaying solutions (or periodic 
solutions, in which case integration is performed over .one space period) are known 
to satisfy, three conservation laws [12] 

where the ci are real constants, independent of time. The first of these. Eq. (1.6). 
represents the conservation of mass or L’ norm of the system, and we refer to 
Eqs. ( 1.7) and (1.8) as the conservation of energy and impulse respectively. 

In devising numerical schemes for the cubic Schrodinger equation, considerabie 
attention has been paid to observing the discrer e counterpart of (1.6) [13], and 
even of ( 1.7) [ 141. although the advantages gained by doing so are not clear [IS, 
161. The conservation of the invariants is more difficult to enforce when the addi- 
tional nonlinearities are included in the equation, and the need for doing so remains 
to be established. 
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We consider here four pseudo-spectral split-step methods for solving the initial 
value problem for (1.1). The first method conserves the mass in the discretized 
system, but requires the formation of expensive convolution sums. We then 
propose two alternative schemes, which considerably reduce the execution costs 
by sacrificing the invariance property. The convolution in the first method is 
unnecessary if 2q,, + qu = 0, and the transformation of an arbitrary GNLS to one 
satisfying this condition forms the basis of the fourth algorithm. We compare the 
methods through a number of numerical tests, and demonstrate the value of 
maintaining the mass invariance in the discrete system. 

2. PSEUDO-SPECTRAL SPLIT-STEP METHODS 

To solve the GNLS numerically we write it in the form 

if+,11 = Yu: (2.1) 

where Y is the spatial differential operator acting on U(X, t), defined by 

(2.2) 

With such a representation we can consider the spatial approximation indepen- 
dently of the time integration. 

We solve for u(.K, I) on the finite rectangular grid (x, t) E [a, h] x [0, T]. Since 
the GNLS is invariant under a translation in space, we can, for convenience and 
without loss of generality, consider the interval centered about x = 0. The spatial 
domain is uniformly discretized at II + 1 nodes .yi, j= -n/2, . . . . n,!2 with grid 
spacing Ax = (b - a)/n, and the solution is computed at times t,,, = PI x At, At being 
the constant time step, for 0 < t,, 6 T. We let U(x, t) be the approximation to 
U(X, t), and denote by subscripts and superscripts the approximations to u(,Y, t) on 
the spatial and temporal grid points respectively. Hence, U,(t) denotes U(xj, t), and 
Uy z u(-u,, t,,,) is the approximation in the fully discretized system. 15:” is deter- 
mined by the initial condition, Ujo = uo(xj) for j = - n/2, . . . . n/2. 

We first consider the discretization of the space variable. If u(x, t) is periodic on 
the spatial domain, and if u(x, t) and u,(x, t) are piecewise continuous there, then 
U(X, t) may be represented by the Fourier series 

11(x, t) = T &(r) exp ip,.u: (2.3 I 

where 

2rtk 
Lb== (2.4) 
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and where the Fourier coefficients are defined by 

1 “h 
CJt)=- 

b-a-, 
24(x, t) exp - i,ti,s &:. I- c IL., I 

The computed approximation of (2.3) is a truncated Fourier series determined by 
the discrete function values at the II collocation nodes (the assumption of spatial 
periodicity reduces the number of degrees of freedom by one). On the grid points 
the interpolating polynomial has the form 

(2.6,; 

with Fourier coefficients calculated according to 

Spatial derivatives are formed by analytically differentiating the interpolating poiy- 
nomial and, Letting D, denote the approximation to L:,. at the grid points 

Calculation of derivatives using function expansion techniques generaily requires 
O(z’) operations. However, since the collocation nodes are uniformly spaced, the 
fast Fourier transform (FFT) may be used, at O(n log IZ) cost, to transform the 
problem to Fourier space, where derivatives can be inexpensively formed [I’?]. If 
tz is a power of 2: the speed of the FFT is exploited to the fullest and so we limit 
our discussion to the case n = 2.‘, with N an integer. For convenience, we drop 
the indices on the summation symbols and adopt the convention that z denotes 
summation from -n,‘2 to n,‘2 - 1, unless otherwise indicated. 

The semi-disc&e system defined by the finite Fourier representation possesses 
anaiogues of the conservation laws ( 1.6 )-( 1.8 1, namely. 



112 PATHRIA AND MORRIS 

It admits exactly the nonlinear dispersion relation of the differential equation, and 
the approximation enjoys spectral accuracy, that is, for sufficiently smooth func- 
tions, the interpolation error decays faster than any power of II [18]. 

We now consider the time integration procedure, suppressing for the moment the 
approximation in the spatial dimension. Formally, (2.1) has the solution 

u(x, t,n + At) = exp C’“““’ Y(T) k . U(X, t,,,), 
It?? 

(2.12) 

where for brevity we use Y(T) to represent P(T, u(x, r) j. The integral in (2.12) can 
be approximated by a first-order right-hand rectangular rule, 

i 

I,+dc 

Y(r) dz = AtY(t,) + o(At’), 
- fm 

(2.13) 

and the exponential by decomposing Y into three suboperators 

Y=.Y+,d!+,I’, (2.14) 

where 
Y=iit (2.15) 

..M= -q,,, /z41yqu 1z4[2a, (2.16) 

-f‘=iq, jul’+iq, /z414. (2.17) 

The resulting exponential 

zf(x, t, + At) = exp drY(t,) . z4(.u, t,,,) = exp Ar(P(trn) + ,N(t,) + A”(r,,)) . ZI(.X, t,,) 
(2.18) 

may then be approximated by the first-order splitting 

U(-y, t,,+3t)=exp dt~(t,j.exp dtJY(t,,,)~exp dtA"(t,,,).u(X, t,)+ O(dt'), 

(2.19) 

which is exact in the special case that .Y, A’, and A’ commute. Higher order 
splittings are possible [19] but we restrict our attention here to the first-order 
method (2.19). 

If considered separately, the advancements in time for ,” and L? are performed, 
in physical space and Fourier space respectively, according to 

d.‘c> tm + 1 )=expAt,~l”(t,,,),u(x,t,):U”t’=expi(q,~U’i’~2+qq~Un’~4)At.Um 

(2.20) 

u(x, t,, + *) = exp AtL?(t,, j . ZI(S, r,,,): U"' + ' =9-‘[exp --ipkz At .Fk[U”‘]]. (2.21) 

and the mass invariance is maintained by both approximations. 
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Equations (2.20) and (2.21) are sufficient to form the split-seep methods Car .the 
cubic Schrodinger equation [20-221 and the cubicquintic Schrodinger equatjkn 
[23]. The method is particularly well suited to these equations, since the derivative 
terms appear only linearly and the time stepping in Fourier space can be accom- 
plished without the formation of convolution sums. Therefore, in the absence of rhe 
nonlinear derivative terms, q,, = q,n = O> the method is readily obtained from (2. iS 1 
by sequentially applying the stages (2.20) and (2.21). The time integration is exptlci: 
in the nonlinear term, Eq. (2.20) but implicit in the linear. Eq. (2.2i ), and is there- 
fore appropriate fer the pseudo-spectral discretization. The cb(iz log 17) cost of trans- 
forming between physical and Fourier space discourages :he use of noniineariy 
impiicit time integration schemes, which must be solved by iteration. 

Taha and Ablowitz note that the simple nonlinearity of :he cubic Schrodicger 
equation may account for the success of the split-step method for that problem 
[22]. Indeed. the presence of the nonlinear derivative term ii3 the CNLS ccm- 
plicates the observance of the 1’ invariance. While derivatives are accuraX!y 
approximated in Fourier space, nonlinearities are more economically cvaluatec ic 
physical space. their Fourier representation requiring the formation of convoiuxicn 
sums, at a cost corresponding to the strength of the noniinearity. This cost can be 
avoided by integrating in physical space. but then the i’ invariance of the computed 
solution is lost. The value of this invariance, in terms of the cubic Schrtidinges 
equation, has been the subject of some debate. Hcrbst, Mitcheli. and Weideman 
[24I] encounter the nonphysical blowin g up of solullions ivhPn the miiss is nei 
conseraed. In other studies, however. the invariance property appears to be nei3xx 
necessary nor sufficient for reasonable results 115, 15), We therefore examine the 
need for mass invariance in the numerical solution of the GNES, and present !ou~ 
methods which differ in their treatment of ,&. and which consequently exhibit 
different conservation properties. 

A simple rearrangement of the nonlinear derivative terms allows the GNLS to be 
vcritten in an equiva!ent form, 

Hence .N can be expressed as 

and may be split further into the two operators 

c I/, = - 2iq,n Imt zrzi.1 

i//,= -(2q,>z+qJ /li/zi;:< 
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The advancements according to each of these, considered separately, become 

u(x, t,,,+,) = exp At,,HL . u(x, t,,): LTnr+’ = exp -2iq,, Im( U,, c?, 0”‘) At U”’ 

(2.1.5) 

u(x, t,,,,,) = exp At,/“/, .24(x, t,,,): U ‘~rc1=~-1[exp-i(2q,+q,)~,B, At..&[U”]]. 

(2.1.6) 

Here B, the convolution sum due to representing /u12 term in Fourier space, 
satisfies 

(2.1.7) 

k 

with B, := 0 if Iilk Ukl is less than some specified tolerance. 
When applied successively on the spatially discrete problem, the individual time 

stepping schemes yield the fully discrete algorithm PSl for computing /I;+‘, 

U,‘O’=expi(q, IUy)‘+q, IU~l’)At.U,” (2.1.8) 

U,“)=exp -2iq,n Im(Uj’o’D~,U~O’) At. Ui”’ (2.1.9) 

U,“)=.F,:‘[exp -i(2q,,+q,,)B,,ukAt.&[Uj”‘]] (2.1.10) 

UT+‘=~,T’[exp -i~ikZAt.Pk[U,(“]], 
J 

(2.1.11) 

where B, is defined by (2.1.7) and where Uj ID), Uj”‘, and Ujt7’ are intermediate 
functions, not meant to be approximations of the solution. Since ,& is premultiplied 
by At in (2.19), it may be computed in terms of the intermediate values UjCO’ and 
Ui(‘), without affecting the order of the scheme. 

The pseudo-spectral method PSl possesses a discrete analogue of the conserva- 
tion law (1.6) 

AxI IU.;+‘(‘=Axx jUJ’J’=&, (2.1.12) 
.; .i 

but the analogues of (1.7) and (1.8) do not survive the time discretization. The 
method involves computing the n convolution sums B, at an 0(n)) cost at each 
time step. 

2.2. Method PS2 

The O(n3) cost of forming the Bk terms leads us to reconsider the integration 
corresponding to the operator A%?~, and we use 

u(x, t,, + At) = exp At&d2 ’ u(x, t,,,): U”” ’ 

=- Jsr: exp -i((2qM + q,) IU’n12 ilk At) 0: exp ip,xj. (2.2.1) 
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If 1 C.;“‘lr were constant in space, then (2.Z.l) could be efficiently computed by trans- 
forming to Fourier space, multiplying each element of !he transformed sequence by 
a constant value and transforming back to phvsicai space. The spatial dependence 
of / hi”‘\ ‘, however, compels a convolution in Fourier space, and this is of ceurse the 
dominant expense associated with method PSI. Here we compute (2.2.1) direct’:y, 
via a matrix-vector multiplication rather than through the fast Fourier transform, 

The conservation of mass is no longer guaranteed. but the cost of the metho:i is 
reduced to 0(n*) Poperations per time step. 

The third spin-step method advances according to Y and k 1. as before. but uses 
-:he alternative definition of A, obtained by writing the CNLS as 

This definition of ;/i”, explicitly stated as 

leads to the integration scheme 

The complete algorithm PS3 comes from applying the split-step method to the 
semi-discrete system, 

A straightforward expansion of (2.3.5) reveals that, as with method PS2, tk !’ 
norm is conserved exactly if 2q,,, + q,, = 0. The computationai cost her2 is furthzr 
reduced to O(rz log II) operations per time step. 
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2.4. Method PS4 

At this point we make the observation that the condition 2q,,,+q,,=O obviates 
the convolution in method PSl- since the step (2.1.10) may then be omitted from 
the algorithm. The last method we consider is based on solving a new GNLS 
equation 

obtained from (1.1) by the transformation 

u(x, t) = i+b(x, t) exp i&s, t), (2.4.2) 

where the real function 0 is defined by 

(2.43) 

(2.4.4) 

The new coefficients in (2.4.1) are 

Qq = qq - @L, + 4u)(29,,, - %A 

Qm = - kc,, 

(2.4.5) 

(2.4.6) 

with Q, and Q, unchanged. We note that the compatibility condition for 0, 
8,,= O,,, is satisfied by (2.4.1), that /uJ = I$/? and that the transformation works 
both ways. 

The fourth split-step method PS4 is obtained by applying the algorithm as for 
PSl to (2.4.1). However, since 2Q,,1 + Qli = 0, the calculation no longer involves the 
computation of the B, terms; the step due to ~7~ is absent. Since (2.4.1) may be 
written in the equivalent form 

(2.4.7) 

Y)“‘=exp i(Q,. 1 Y;:‘j’+ Q, 1 .;,I’) At. Y; (2.4.8) 

YJ” = exp iQ,, Im( Y;.” D, lyj’)) At. YJ”’ (2.4.9) 

Y;+‘=9,:‘[exp -ipk2At.&[Y~‘J]]. (2.4.10) 

For the purposes of calculation, we note that the particular choice of 0(x, t) defined 
by 

> 
(2.4.11) 
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satisfies (2.4.3 )-(24.1) and, following the usual notation with By’ z @(r,, r,,, j* can be 
computed by 

for t7r 3 1. Since \$(s, O)\ = ju(x, O)(, 0; can be found analytically using the Ini:iai 
condition 

and at time r,,,. L’;” is evaluated according to (2.42) by 

CJ.J’ = u/y exp i@.y. (2.4 14) 

We note that the expiicit calculation of Uy’, and hence of @y, at each ?ime steps is 
not necessary to advance F-y and consequently. that if only the modulus of the 
solution is of interest. these computations may be omitted entirely. 

This method, by construction, conserves the 1’ norm of the computed solution 

eing free of the calculation of convoiution sums, it requires O(n log 12) operations 
per time step. 

3. NU~RICAL TESTS 

It is worth mentioning here that the Fourier methods described above are wholly 
suitable for tracing the evolution of solitary wave soiutions of ( I.1 ). The assummion 
of spatial periodicity is not inappropriate since these solutions are rapidly 
decreasing functions of .Y and should therefore be nearly zero at the endpoints of 
the interval [a, b], provided this interval is not kept unreasonably small. 

e compared the four split-step methods on the problems described below; ail 
numerical tests were run on a SUN 3!160 computer. 

3.1. Plane Wure Soizrtiorz 

The GNLS admits a progressive plane wave solution 

u(x. f) = A exp i(tis -cot) 
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with constant amplitude A and nonlinear dispersion relation 

w=K'+rl,(‘~I'K--q,.IAl'-qqIAI'. (3.1.2) 

All four split-step methods admit identically this nonlinear dispersion relation; that 
is, if 

117 = A exp i( Kdyi - wt,) 

satisfies the discrete system, then this w  is also defined by Eq. (3.12). 

(3.1.3) 

For this test, we choose qc = q,, = 0, qq = 0.01, and qu = A = K = 1, so that the 
theoretical solution is U(X, t) = exp i(s - 1.99r). We ran the program on the interval 
06 t < 3, with time step dt= 0.1. The problem was solved on -n <.x< n for 
methods PSl-PS3 but, to force periodicity on Y, on the interval - $ <.x 6 $c for 
method PS4. 

Methods PSl, PS2, and PS4 produced the correct results, depicted in Fig. la (the 
solution computed by PS4 is truncated to the interval --n <I < x). Method PS3 
for some time had no difficulty with the problem but, near t = 3, suddenly produced 
erroneous results as shown in Fig. lb. The problem can be traced to the lack of 
conservation. The quantities E,, E,, and E,, approximating co, e,, and e, respectively, 
varied only slightly until t 2 2.3, but then the errors grew dramatically as seen in 
Table I. 

When the time step was reduced to At =0.025, all three quantities remained 
nearly constant and the method produced the correct results (Fig. lc). This reduc- 
tion can only postpone the onset of instabilities related to the nonconservation, 
however, and the problems observed with the larger time step are likely to appear 
if the integration is extended over a longer period of time. 

TABLE I 

Invariants for Plane Wave Solution (Method PS3 with d/=0.1) 

f EO E, & 

0.0 
0.1 
0.2 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

6.4795 9.40 - 12.566 
6.4795 9.40 - 12.566 
6.4795 9.40 - 12.566 

6.4803 9.47 
6.4807 9.62 
6.4975 10.1-l 
6.4973 11.87 
6.5050 17.80 
6.6833 38.34 
6.9643 111.17 
7.7873 349.40 

12.8351 1339.73 
748.9435 79886.07 - 

- 12.561 
- 12.550 
- 12.510 
- 12.371 
- 11.883 
- 10.202 

-4.081 
14.460 
79.118 

1979.741 
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The greater E, values for method PS4 in Table II are due to solvir,g the tra~for- 
med CNLS on the larger spatial interval. The results presented in this table also 
reveal the enormous expense of method PSI. As n increases, the COST of this metbd 
becomes prohibitive and so we dismiss it from further consideration. 

For this simple test, method PS2 very accurately conserved the l2 Norm and 
provided an excellent approximation to the solution. This situation does cot 
continue, however, through the more difficult probiems considered behow. 
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TABLE II 

Comparison of Methods for Plane Wave Solution 

Method II 4t 

PSI 32 0.1 
PS2 32 0.1 
PS3 32 0.025 
PS4 32 0.1 

1” error 

2.44990 x 10 -q 
4.88513 x 1o-6 
2.73741 x 10-l 
1.36836 x 10 ~’ 

E” (t=O) 

6.479535 
6.479535 
6.419535 

10.367256 

E, (t=3) 

6.479523 
6.419533 
6.419774 

10.367248 

cpu (min) 

4.402334 
0.264667 
0.137000 
0.037333 

3.2. Solitary Waoe Solution 

The GNLS admits a travelling solitary wave solution [12] which, for the choice 
of coefficients, 

has the form 

4 

> 

1.2 

u(x, t) = 
4+3 sinh2(x-2t- 15) 

exp $(x, t) (3.2.2) 

4(x, t)=2 tanh-‘(itanh(x-2r- 15))+x- 15 (3.2.3) 

and represents a bell-shaped solitary wave, initially centered at x = 15, propagating 
to the right with speed 2. 

For the initial condition uO(x) corresponding to the above solution, methods 
PS2, PS3, and PS4 generated the travelling wave depicted in Fig. 2; there were no 
visible differences in their graphical results. The two notable outcomes of this test 
were, first, the high computing time required by method PS2 and, second, the 
higher accuracy of method PS4 (see Table III). 

A comment is in order here about the choice of grid parameters dx and dt. The 
finer space discretization required by method PS3 was necessary for reducing the 
error in the phase (3.2.3). We also found that, although the methods produced the 
same graphical output using larger time and space steps, a finer resolution was 
required to obtain acceptable accuracy in the phase of the underlying carrier wave. 

TABLE III 

Comparison of Methods for Solitary Wave Solution 

Method n At I” error E. (t=Oj E, (t=3) cpu (min j 

PS? 12s 0.001 3.97712 x lo-’ 2.197224 2.169494 372.9927 
PS3 256 0.001 1.54745 x 10-T 2.197224 2.210461 30.14600 
PS4 128 0.001 2.90347 x 10 - 3 2.197224 2.196960 15.71533 
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FIG. 2. Solitary wave solution (Methods PS2, PS3, PS4). 

It seems that the modulus, or the envelope, of the solution is a more stable quantity 
than the solution itself; consequently a less stringent discretization would have been 
sufficient to accurately model the amplitude of the wave, 

3.3. ~~ter~cti~g Solitons 

In this last experiment, we consider interacting solitons for the integrable 

iu,fu,,+ jul2ut luj4u-2 lu/*xu=o (3.3.1) 

with initial condition 

i(l-!5)+tanh 

+ ; sech 

The solution consists of two solitary waves, the one initially on the right movin 
left with unit speed, the one on the left moving right with speed i. Theoretically, the 

TABLE IV 

Comparison of Methods for Interacting Solitons 

Method n 

PS2 128 

PS3 128 

PS4 128 

At E, (t=O) E. (t=20) cpu (min) 

0.01 2.999651 2.689106 253.9183 

0.01 2.999651 3.257465 10.25861 

0.01 2.995740 2.995202 4.198661 
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two solitary waves should emerge from their interaction with their shapes and 
velocities unchanged, although they may be displaced from the position they would 
have occupied had the collision not occurred [12]. 

The problem was solved on the interval 0 < .Y < 50, up to time T= 20. The results 
are presented in Table IV; for this problem the theoretical L’ norm of the system 
is e,, = 3. The disparity in the cpu times of methods PS3 and PS4 should not regar- 
ded as typical. In this case, the transformed system (2.4.1) is a cubic NLS in Ii/(x, t), 
and consequently, method PS4 does not evaluate the nonlinear derivative terms 
(2.4.9). 

The solutions computed by the three methods are plotted in Figs. 3a-c. All three 
methods produced similar results, although we notice some discrepancy during and 
after the interaction of the solitons. For comparative purposes we include the solu- 
tion of the cubic Schrodinger equation related to (3.3.1) by the transformation 
(2.4.2). As expected, these results (Fig. 3d), computed by method PSl, agree exactly 
with the output of method PS4. The evolution of the theoretically conserved quan- 
tities E,, E,, and E2 (Fig. 4) explains the errors of the other two methods. The 

FIG. 3. (a) Interacting solitons (Method PS2); (b) Interacting solitons (Method PS3 ); (c) Inter- 
acting solitons (Method PS4); (d) Interacting solitons for corresponding cubic problem. 
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4.00 
Method PS2 

1 
Method PS3 

? 

-3 00 L- A 
0.00 5.00 10.00 15.00 20.00 0.00 5.00 !0 00 15 00 20.00 

time ttme 

Method PS4 

2 00 

I 0" 

0.00 

-1 00 

-2 00 

-3 00 

0.00 5.00 10 00 15.00 2" 00 

FIG. 4. Conserved quantities (Methods PS2, PS3, PS4) for interacting solitons. 

FIG. 5. Interacting solitons (Method PS4) with 0: computed by a composite trapezoidal rule 

581,87#1-9 
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decrease in the I’ norm of method PS2 accounts for the discernible flattening of the 
solitons (Fig. 3a), and its increase as computed by PS3 for the slight steepening 
(Fig. 3b). 

Finally, we note that method PS4 requires an accurate approximation of 0:; 
small errors here are magnified and produce substantially incorrect behaviour. Only 
the initial approximation to 19(x, 0) has any bearing on the calculation of !Yy, so 
that its precise calculation is required just once. When the initial condition u(.Y, 0) 
is specified as a continuous function, as it is in all of the tests presented here, then 
0(x, 0) can be found analytically according to (2.4.13). If, on the other hand, the 
initial condition is specified as discrete data values, then some care must be exer- 
cised in evaluating 0:. In such cases, it is advisable to approximate the integral in 
Fourier space via a real Fourier transform of ( Yj/’ 3 1 Ug/ 2. Figure 5 illustrates the 
effects of computing 0: by a composite trapezoidal approximation of 1 Ill/(.x, O)] ‘. 
Although the errors in the approximation are typically of the order 10 -4, they are 
progressively magnified and result in changes of speed of the solitons and unclean 
interactions. 

4. CONCLUSIONS 

We have presented four pseudo-spectral split-step methods for solving a class of 
nonlinear Schrodinger equations, two of which reflect the mass invariance property 
of the continuous problem. The advantages of observing this invariance, both in 
terms of accuracy and stability, are demonstrated through numerical experiments. 
The mass conservation, when solving the general equation ( l.l), exacts a high price 
through the evaluation of convolution sums. For the class of problems where the 
coefficients satisfy 2q, + qU = 0, these sums need not be formed for the time integra- 
tion. The transformation of an arbitrary GNLS to a member of this class therefore 
provides an efficient means of computing the solution, while observing the I’ 
invariance. The precise calculation of the phase difference between the given initial 
condition and the initial condition in the transformed variable system is necessary, 
and the solution in the transformed system must be periodic on the spatial domain. 
For studying solitary wave evolution, this last restriction poses no problem, since 
the transformed solution will also be a rapidly decreasing function of x. 

When solving the GNLS (1.1) directly, the nonconservative method PS3 may be 
preferable to the conservative scheme, as it dramatically reduces the computing 
time. The method must be used with some care to ensure that the mass is conserved 
to within a reasonable tolerance. An adaptive strategy, where the time steps are 
chosen to avoid large changes in the conserved quantities, would be beneficial here 
as a safeguard against numerical errors. Alternatively, a conservative method, such 
as PSl, may be invoked if the nonconservative scheme experiences difhculty in 
maintaining the invariances. 

In conclusion, the behaviour of the quantities E,, E,, and E2 provides a valuable 
check on the numerical results. In our experience, we found the computed energy 
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Ei to be the most sensitive of the three in indicating numerical difkxlties and. 
consequently, the application of any numerical scheme should be accompanied by 
a close watch on its evolution. 
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